奥赛一本通 1195

发布于 16 天前  9 次阅读


【题目描述】

一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:

    (+1) + (+2) + (+4) = 7

    (+1) + (+2) + (-4) = -1

    (+1) + (-2) + (+4) = 3

    (+1) + (-2) + (-4) = -5

    (-1) + (+2) + (+4) = 5

    (-1) + (+2) + (-4) = -3

    (-1) + (-2) + (+4) = 1

    (-1) + (-2) + (-4) = -7

所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。

【输入】

输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。

【输出】

如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)

【输入样例】

3 2
1 2 4

【输出样例】

NO


花开花败总归尘。 阴阳化生,清浊自分。